We Live Too Short and Die Too Long

How to Achieve and Enjoy Your Natural 100-Year-Plus Life Span

Revised Edition

WALTER M. BORTZ II, M.D.

SelectBooks, Inc.
New York
Contents

Foreword vii

1 One Million Hours 1

2 Why Things Grow Old 19

3 The Failure of Medicine 41

4 Prevention’s Problems 63

5 Aging is a Self-Fulfilling Prophecy 85

6 Use it or Lose it 107

7 Snow on the Roof, Fire in the Furnace 135

8 New Tricks and Old Dogs 153

9 What Man Lives By: Exercise, Diet and Sleep 181

10 Self-Efficacy 215

11 The Last Passage 237

12 The Greening of Graying 255

Index 275
Acknowledgments

The sources for this book are many. Family, patients, colleagues, friends, and teachers have all provided rich background for the syntheses that I have sought. Unique assistance has been infused by Linda Perigo Moore, whose abilities gave light to my density, and by Toni Burbank, who was an early shepherd.
This is a book about aging. It will challenge everything you ever thought about the subject.

First, *We Live Too Short and Die Too Long* will challenge the boundaries you probably place on the human life span. Exactly how long do you expect to live? The life insurance industry bets that for most Americans it will be about 78 years. But you’re an optimist, right? So you’ll plan on beating the odds and reaching your nineties. I contend, as do other scientists who have studied the dynamics of human life, that both of these estimates are far too short. Several lines of evidence clearly place the human life span at a remarkable 120 years.

I will detail my case in the chapters that follow; but for now, the most convincing facts may be those which are the most simple. In Asan, Japan Shigechiyo died on February 21, 1986, in his 121st year. Madame Jeanne Calment of Arles, France died on August 7, 1997, well into her 123rd year. Such longevity provides an inescapable inference—what is possible for one is possible for others.

That’s quite a leap from the time of the first Caesar, when human life expectancy was 25 years, or from the beginning of the twentieth century, when the average American lived to the age of 49. Traditionally, this increase in life span has been explained by factors such as decreased infant death mortality, eradication of communicable disease, and improvements in both nutrition and public hygiene. These most certainly are significant developments, but they only skirt the periphery of a more fundamental act. We live longer because we are designed to live longer. And when we control anomalies such as disease, trauma, behavioral maladaptation, and self-destruction, the natural order of our life prevails.

Expanding our definition of longevity means expansion of terms such as middle age and old age. For example, if you are now 40 and a member of that bold, exceptional generation known as the baby boomers, you’ve been told by much of the media that you are reaching...
midlife. I challenge this contention. With prudence of prevention and health maintenance, you should think of yourself as a much younger life stage—capable of living far longer, and in a far more healthy status, than did your forbears. In essence, the opportunity to experience these additional years can be thought of as a “gift of found lifetime.”

Still, some may fear this gift because of misconceptions regarding the physical nature of the aging human body. This is the second and perhaps most important way in which my book will challenge you.

Imagine now that you have reached the magic centenarian mark. How do you envision the quality of your life? Are you climbing a tree or a mountain; or living numb in a nursing home praying for death? I believe the fear of being old and infirm is what keeps us from being old and healthy. My hypothesis comes as a physician who for decades has watched with astonishment as his patients actively avoided all manner of preventative health care. As our knowledge of aging rapidly advances, such a tragedy is unnecessary, wrong, and inappropriate. I am not speaking now of medical technology, for I do not believe the miracle is with us today. This is because much of what passes as age change is really not due to age at all—but to disuse. Put a broken leg in a cast and in a few short weeks it will wither and appear as a leg many decades older. Similarly, all of our bodily functions—digestive, cardiovascular, respiratory, sexual, and mental—are highly keyed to use. “Use it or lose it” is far more profound than its colloquial tone suggests. Thus, the length of life is determined much by its content. Will you—will we—be a liability or a resource? The issue becomes not just how long or how well, but how long and how well. Quality of life and length of life cohere.

Others have described life span as a bell-shaped curve, growing to fullness and richness, only to decline into age and dependency. I deplore the decremental model, preferring instead to think of life as a “square-edged existence”—passionate and forceful to the end. We may achieve the square-edged existence only when we appreciate this remarkable final stage just as we have learned the joys of every other stage of life. A child takes his first steps, and we are exalted. The stages of later life can and must obtain the same status in the human experience.

A dominant source for my thesis on aging comes from my father, a physician before me, whose vision and wisdom perpetually reveal themselves to me—particularly as I sense that I have just derived a new and precious insight, only to discover that Father had preempted
my discovery by decades. In his book, Creative Aging, he defined man as a Converter of Energy, an Intellectual Catalyst, an Emotional Dynamo, and a Spiritual Wanderer.

Such description, to me, was inspired and encompassing.

Aging is neither disease nor villain—that which must be cured or vanquished. Aging is a part of our natural growth process.

My father, when asked, “Dr. Bortz, how do you prevent aging?” replied, “I’m not interested in arrested development.”

Such an intrinsic and developmental process is in communion with the anthropological history of our species and the physical laws of our universe. When we can view aging from this perspective, it is no longer something to fear or avoid. Our responsibility, upon receiving the gift of found lifetime, is then to acquire the most and the best that aging can offer.

“But what of the body?” you may persist. “Even if the spirit is bold, the body will falter.”

Mark Twain, in Letters from The Earth, wrote, “Man seems to be a rickety poor sort of thing. He is always undergoing repairs. A machine that was as unreliable as he would have no market.”

I intend to explore these flaws in the human condition—our fore-shortened life span and our protracted demise. My examination will search out evidence drawn from hosts of sources. I will present to you only the best of the research—both those discoveries which have served as historic benchmarks and those which are just now on the outer frontiers of our medical understanding.

Using anthropologic and thermophysical concepts, as well as examples from my clinical experiences, I intend to trace the logic of our natural life span. For example, one perspective comes from my research in Africa into physical exercise as an evolutionary force. Over four million years ago the biologic transition from the shelter of the jungle canopy to the open savanna was the most important journey of our existence. I propose that the plain was a new ecologic niche for which we had much preadaptation. What set us apart from competing species and allowed us to endure with otherwise modest physical endowments was the unique ability to run long distances in the heat. “Persistence hunting,” as it has come to be called, was—and is—our innate ability to run down food (in early times, the plains antelope) simply by keeping it moving in the midday sun. Such long, hard running is an activity most of civilization has forgotten. Our biologic selves have not.
As I have said, this is a book about aging. More important, it is a book about living. The story of one is the story of both. It will prove to you that you are capable of living to the ripe old age of 120. It will explain why many of us will not. And it will show the rest of us how to do it.

Others have experienced their Golden Age or their Industrial Age. We have entered the “Age Age.”
We cannot paint our Mona Lisa and leave the last third of the canvas blank.
We cannot build our house and leave off the roof.
We cannot run our race and stop before the final lap.
We cannot have dinner without dessert.
We cannot sing our Battle Hymn without the “Glory, Glory, Hallelujah.”
We should sing all our song.

W. M. B.
One Million Hours

To know how to grow old is the masterwork of wisdom, and one of the most difficult chapters in the great art of living.

HENRI AMIEL

Old age is entirely new. There has never been anything like it before—at least to any substantial degree. It is the ultimate epidemic. There have been occasional old people before, but not like this. In 1900, there were 123,000 persons in America over 85 years of age. Now there are 3 million. By 2050, some estimates predict there will be as many as 50 million. That’s 16 percent of the population, compared to 1 percent now. Talk about a “megatrend”! In that same year, all of my four children will be over the age of 85. I will be 120.

If I had been born in 1830 instead of 1930 I would have been dead for 30 years, but instead I am still running marathons.

How can this be? Let me begin by considering a machine—the perfect machine. Its cogs and pulleys are meshed to ultimate efficiency. Its struts and joints are sturdy. Its utility is manifest; its fuel is plentiful; its maintenance is negligible; its cost of production is minimal; its raw materials are abundant. It is friendly, versatile, and adaptable, and its operation is perpetual—or, failing that, its final disruption is abrupt.

Measured against such a design, the human body rates poorly. True, production costs are low, delightfully so; and maintenance and fuel costs are manageable. In its early years it is capable of wondrous efficiency. But a manufacturer would balk at the expense of a body’s
repair. It rusts out before its projected useful life is spent, and its final breakdown costs too much and takes far too long. The report of an industrial consultant would conclude that the human machine doesn’t last as long as it is designed to last, and that its terminal operation is characterized by expensive decay and intolerable inefficiencies. The consultant would wonder whether these defects are secondary to blueprint errors (nature) or to environmental mishaps (nurture).

The Age Age

More than one historic epoch has been labeled a “watershed moment.” Each was a cohesion of population dynamics and environmental challenge which provided a change in the course of human history. Each altered the mechanisms and direction of evolution. They are the monuments of punctuated equilibrium. Historians seem to take delight in identifying certain parts of our species’ calendar by “age labels.” We have had the Stone Age, the Bronze Age, several Ice Ages, the Agricultural Revolution (which Dr. Richard Leakey claims represents the single most significant event in human history), and the Industrial Revolution. With some pride and justification, the historians have already labeled our current epoch the Space Age. However, with equal propriety, appropriateness, and sense of history our time can be called the Age Age. This definition of our contemporary era derives its force from two elements: first the sheer number of old people alive today, and second, and more important, the fact that we have for the first time a soundly based idea of how long we are meant to live, and the forces which disrupt this logical extent.

In the past, death appeared randomly, as an unexpected event, like a dish breaking in the dishwasher. Until now, growing old was an accident, a survival based upon chance rather than design. Everything was foreshortened. As a child I regarded my 70 year old grandparents as extremely old—now, 70 years later, the seventies are increasingly acknowledged as part of middle age. For the aboriginal being—as well as for the animal—old age was the unlikely result of having survived myriad hostile encounters with unknown hazards and unexpected events. Daily existence was precarious. No one knew how many tomorrows there were to be or how to define a coherent life pattern. Such ignorance bred fear; and this accounts for much of what we see today as a starkly negative imagery concerning aging.
It is time for us to change. Present knowledge has expanded sufficiently for us to glimpse our entirety—to estimate the ultimate potential of the human life span.

What is the Human Life Span?
An animal may grow old in the wild, but not often. Accidents and predators keep the old members few. Evolutionary theory would predict that the onset of age and protracted weakness would not serve the survival of the species. History’s great killers—famine, pestilence, lust, and war, the four horsemen of the Apocalypse—are largely controlled. New killers—arteriosclerosis, cancer, and automobile accidents—emerge. But if all external influences were eradicated, how long would it take for our machine to self-destruct? In the past, most people died young. Now most people have the chance to grow old. In 1960, there were 3,000 centenarians counted in the United States. Now there are 71,000. There will be 114,000 in 2010, 241,000 in 2020, 1 million Americans over the age of 100 in the year 2050, and 1.8 million in 2080. Kenneth Manton, a scholar and demographer of aging at Duke University, calculated that 1 percent of male boys born in 1975 can expect to reach the age of 105, and 1 percent of female babies born that same year will live to 110.

My own clinical experience reflects this trend. I have cared for several dozen patients over 100. I have had the opportunity to care for one person who was 108 when he died. I have cared for thousands of persons in their nineties. Before her death at nearly 95, my mother still went to baseball games and traveled independently.

How Old is Old?
For how long is our machine designed to run? *The Guinness Book of World Records* observes, “… no single subject is more obscured by vanity, deceit, falsehood, and deliberate fraud than the extremes of human longevity. Extreme claims are generally made in behalf of the very aged rather than by them.”

A few years ago our attention was drawn to three population groups, one in Hunza (a region in northern Pakistan), one in southern Russia, and one in Ecuador.

An article in *National Geographic* by Dr. Alex Leaf, of the Massachusetts General Hospital, told of these peoples—many of
whom were said to be living healthy, active existences until age 130 and beyond. Shirlibaba Muslimov of the Russian republic of Azerbaijan was said to have died at the age of 168. Commissar Stalin, a Georgian, supported the claims. The state bureaucracy hastened to advertise this endorsement for the virtues of communist living. The story had a lovely, bucolic Shangri-La flavor to it. Unfortunately, it wasn’t true. Careful examination of these groups has revealed that the longevity of these persons was due to exaggeration rather than to some particular invulnerability or salutary lifestyle. Zhores Medvedev, an expatriate Russian gerontologist, did much to debunk the legend by revealing the inaccuracy of the records and the incompatibility of the observed events with the reported ages. It was noteworthy that all of the “old” Russians were men who had likely taken their fathers’ names in order to avoid conscription.

In 1979, Richard Mazess and Sylvia Forman, of the University of Wisconsin, studied reports of extreme aging among the native population in Ecuador. The scientists worked meticulously to construct genealogical lineages and precise dates, but ultimately found no one over the age of 86. The explanation: the Ecuadorians achieved heightened status by claiming to be very old.

One of the most celebrated oldsters of all time was Old Tom Parr of Shropshire, England. His headstone in Westminster Abbey gives his dates as 1482–1635 and notes that he lived in the reigns of ten kings. However, the attribution of Parr’s age actually came from a confounding with another Tom Parr, two generations younger.

Social Security records in our own country indicate that Charlie Smith was born in Africa in 1842 and was still alive in 1980. More recent documents, however, revealed that this too was an overstatement. Mr. Smith was only 101, not 138.

The mythical Shangri-La remains undiscovered. The “super-gerons” weren’t.

Documentation of true age is a relatively new practice, even in civilized countries. For example, there were no written records in Russia before 1932. Most age records must be deduced from corollary events and likelihoods thereby constructed. On a recent trip to Borneo I sought out evidences of those of long life. A few centenarians were claimed, usually dating their age and activities from the time of the Japanese invasion in 1941. I was fascinated to learn, however, of a Dayak who recalls the eruption of Mt. Krakatoa, in 1883!
How Long Are We Actually Living?

Today, most of us live to approximately 78 years of age—slightly longer than the biblically predicted three score and ten. Meanwhile, scholars continue to search for proof of our upper limits. My Stanford Medical School colleagues James Fries and Lawrence Crapo published a fine, thoughtful book called Vitality and Aging, in which they muster evidence which indicates to them that our life expectancy is 85 years. This wouldn’t give us much extra time to shoot for. More recent actuarial data seem to indicate that many of us are approaching or exceeding this projected end point. Concurrently, Dr. George Sacher has observed that there is a correlation between the life span of a number of animal species and their body and brain weights. Smaller animals with smaller brains have proportionately shorter lives than do larger animals with larger brains. Using this approach, he has calculated that mankind’s maximum life span is approximately 90 years. In fact, both estimates are too low.

In an article from The Aging Society, Paul Siegel and Cynthia Taeuber (citing data from the Census Bureau) wrote: “If the average annual rates of decrease in age specific death rates recorded in the years since 1968 continue to prevail in the coming 65 years (to 2050), the average life expectation would approximate 100 in that year.”

How Long Are We Meant to Live?

Dr. Robert Butler, first director of the National Institute on Aging and long recognized as a master in the field of gerontology, has said, “We haven’t found any biologic reason not to live to 110.

“I’ll go a bit further. It is my best estimate that our biogenetic maximum life span is 120 years—approximately 1 million hours. This means that at birth we have the capacity to live that long—presuming that nothing happens to us in the meantime. The lines of evidence that lead to this conclusion are several, and while no single one can constitute definitive proof, taken together they achieve a high level of probability. Such reasoning is termed the Principle of Invariance. If it rains for seven days straight, it is likely that it is the rainy season. One or another rainy day doesn’t imply this; but when a whole week is wet, the conclusion is inescapable. Using this principle, I find five lines of evidence to support my thesis. These are: observational data, biostatistical maneuvers, the correlations between longevity and
skeletal maturation, studies regarding the decline of vital organ function, and research into the longevity of cells in controlled environments.

Observational Data

The first reason to state that 120 years is our longest life span lies in the fact that some of us are living that long. *The Guinness Book of Records* indicates that Madame Calment set the pace. Her dates were February 21, 1875-August 4, 1997.

Their earlier edition listed Shigechiyo Isumi of Asan, Japan, as the oldest person, having lived from June 29, 1865, until February 21, 1986 (120 years, 237 days). I have corresponded with his physician, Dr. Yoshinobu Moriya, who reported that Mr. Isumi was healthy until the end of December 1985. “He was willing to shake hands with many visitors, especially with young ladies. Many thought that this custom was a moment [sic] for his longevity,” the doctor said. Mr. Isumi also moderately drank a local sugar cane wine. His death was listed as being due to pneumonia, and heart and kidney insufficiency.

After these records a 116 year old female from Ecuador and a 114 year old man from Puerto Rico are listed as the world’s oldest persons as of April 2006.

Biostatistical Maneuvers

Thousands of people are crowding upward; and as worldwide birth records improve, others of long life will be identified. It must be emphasized that these long lives are being achieved despite the continued presence of major health hazards such as environmental pollution, an excess of fat intake, and sedentary life styles. The Japanese have the world’s longest life expectancy despite a very high incidence of stroke; and this brings us to a second line of reasoning. In a statistical projection, the California State Department of Health constructed a scenario in which it was presumed that one or another of our major killers had been eliminated. The results were quite revealing. For example, when such a hypothetical prevention of arteriosclerosis is applied, the average female achieves an expected life of 100 years. The figure of 120 is consistent with this projection.

Kenneth Manton, of Duke University has constructed other such projections. By analyzing extensive U.S. Census data he calculated that in 1982 the “life endurance” of American white females was 114 years and still rising.
In *The Medusa and the Snail*, Dr. Lewis Thomas wrote, “Mankind will someday be able to think his way around the finite list of major diseases that now close off life prematurely or cause prolonged incapacitation and pain. In short, we will someday be a disease free species.” Having risen to such an exalted and extended state of grace, Thomas goes on to ask, “Then what? How can you finish life honorably and die honestly without a disease?”

If our research scientists can provide us with the master protocol to eliminate disease—the ultimate vaccine—it seems to me that 120 years is the logical end point. This presumes, of course, the lack of self-destruction and of accidents—but most of those are preventable as well.

Longevity and Skeletal Maturation

George Buffon, a noted French biologist who predated Charles Darwin, observed a close relationship between the time of skeletal maturity and life span across a broad range of animal species. The intense relationship between growth and life will be elaborated upon later; but in general terms; large animals live longer than small ones. Specifically, when Buffon made his study, he recognized that animals tended to live six times the period needed to complete their growth. When one notes that skeletal maturity is reached in humans at approximately 20 years, the maximum projected life span of 120 years is affirmed.

More recently, Richard Cutler, of the Gerontology Research Center of the National Institutes of Health in Baltimore, has calculated the mean lifetime potential (MLP) of a number of animal species. He finds that longevity is related to the rate of development, length of reproductive period, maximum caloric consumption, and brain size. The MLP varies 50fold over the animal range, from 3 years in the house mouse to 20 years for the dog, 70 years for the elephant, and 100 years for the whale. Cutler calculates that with this refinement he can estimate mankind’s MLP at 110 years.

Importantly, the rate of aging in different species is also found to correlate with the MLP. For example, the loss of immune competence (or reactivity) in man and the mouse is inversely proportional to the MLP. Our capacity to reject foreign skin grafts also seems related to how long we can live. The older we become, the less able are our tissues to generate antibodies to offending agents. Physical vigor, resistance to disease, and numerous other functional markers are
similarly related to MLP and (also according to Cutler) can be used to estimate man's MLP as being 110 years.

How long an animal lives also correlates with the observed decline in vital organ function, which brings us to the fourth line of reasoning.

Decline of Vital Organ Function

All organs and all vital functions show a gradual reduction in capacity with the passage of time. The noted gerontologist Nathan Shock of Baltimore, Maryland, enlightened our awareness of this fact. These declines in function occur in the absence of disease and can be construed as true “age changes.” However, these changes are very slow and generally are in the range of a one-half to one percent decline per year after the age of 30. If one presumes 100 percent function at age 30, one notes that these changes do not theoretically become functionally important until past the age of 100. We know that most individuals operate perfectly adequately at 30 percent of maximum. In fact, it is at the approximate point of 30 percent function that most individuals begin to experience symptoms (such as shortness of breath) which would lead them to seek the aid of a doctor. My point is that for most individuals, much good function still remains at 100 years. A constant reminder of this occurs when an autopsy is performed to determine the cause of death. Presently most deaths are the result of a sharply localized problem: a hemorrhage, a block in a critical artery by a clot or a chunk of cholesterol, or a strategically placed tumor. The rest of the body is still intact and has not had the opportunity to live out its allotted time. In effect, no one has been shown to have died of “old age.” It is not a justifiable death certificate diagnosis—no matter at what age the person dies. In summary, as the decline in vital body function is plotted against time, none becomes limiting to life until 110 or 120 years.

The Longevity of Cells in Controlled Environments

Leonard Hayflick, good friend and brilliant scientist, has given students of aging the single most critical observation in gerontologic research. Until 1974 it was thought that individual cells, when grown artificially in a synthetic culture medium, were capable of indefinite life—the cells would continue dividing ad infinitum. The reference experiments were those of surgeon and Nobel laureate Alexis Carrell, who incubated chick embryo cells in tissue culture medium. He observed that these cells kept dividing interminably, leading to the suggestion that aging, at the cellular level, did not occur. If the
whole is no more than the sum of its parts, the Carrell observation lent hope to the immortalists’ claims. The experiment was terminated after 34 years; and unfortunately, the experiments were flawed and unreproducible. The seeming eternal life of the normal cells was due to contamination of the culture media. (Cancer cells, on the other hand, do seem to have a limitless capacity to divide and reproduce. And this paradox deepens both our awe of the mystery and our determination to find its key.)

Hayflick contributed to this disproof. He found that DNA can replace itself only a certain number of times and that this number is species specific. How long a species lives correlates with the number of cell doublings, reflecting again Buffon’s intuition some 100 years ago.

As Hayflick took nests of human fibroblast cells (those found in connective tissue such as cartilage), clearly only a specific number of cell divisions occurred before the cells started to show signs of aging and stopped dividing. They died after about fifty divisions. If we graph the maximum life span versus the number of all cell divisions, from the mouse to the Galapagos turtle, man’s MLP (maximum lifetime potential) would be 115 to 120 years. Cells taken from 90 year old subjects still have further (ten to fifteen) doublings. Cells taken from older donors showed correspondingly fewer divisions before senescence and death set in. When one takes the number of total cell divisions and multiplies it by the cell life of each cell, one calculates roughly 120 years as the theoretical maximum cell life of cultured human cells.

Hayflick observed, as others have before, that when tissue from older animals was grafted onto younger animals, the cells from the grafts died before the younger animals did. Hayflick personally resists making this predictive calculation, reasoning that what happens in tissue culture need not apply to the whole organism. However, I must champion a different interpretation. When his evidence is placed in context with other, very different avenues of observation, and all are found to be internally consistent—then I would argue, by the Principle of Invariance, that the point is made!

These five separate lines of evidence constitute strong evidence that our endowed birthright, or maximum life potential, is 120 years.

According to Edward Devey, of Yale, the Romans preempted this estimate by 2,000 years. From their ancient writings, Devey concluded, “Ten times twelve solar years was the term fixed for the life
of man beyond which the gods themselves had no power to prolong it. The Fates narrowed the span to thrice thirty years, and fortune abridged even this period by a variety of chances against which the protection of the gods was implored.”

I have devoted my personal and professional energies to the study of aging. While pursuing this endeavor, the point which astonishes me most is that we—supposedly the most inquisitive and learned species on the planet—seem collectively uninterested in clearly establishing how long we are intended to live.

To have such a goal, to achieve some ready sight point on our horizon, seems critical if—as the Oracle of Delphi and others before and since have beseeched us—we are to know ourselves. We vitally need to understand every human capacity, but most certainly how long it is that we should live. Expectation is a vital dynamic of human existence, and unless we have some blueprint to guide us, we surely will not achieve the potential with which aeons of evolutionary experiences have vested us.

What is the Next Step?

Bernard Strehler, noted gerontologist at the University of Southern California, predicted that unless the aging process differs in some mysterious and unforeseen way from the puzzles man has faced in the past, it is essentially inevitable that he will, before long, understand what causes us to age. Understanding carries with it the vital implication that we can begin to design a lifetime strategy for optimal aging. We can write a meaningful lifetime script. We will become both sculptor and marble. We will be the designer and the design. As the unknown is erased, the fears and myths of aging will fade.

Mark Novak stated, “In the past religion or philosophy provided the context for discussing old age, but today these systems of explanation have lost their explanatory power. In their place we have turned to science for an understanding of aging.”

Thus, our next step may be to rid ourselves of the past.

Old Ideas About Aging

Throughout history, interest and involvement in the phenomenon of aging has been sparse. From Greek and Roman times, philosophers, alchemists, and other stray sorts periodically sallied forth on the mis-
sion to explore the significance of aging. All retired with fatalism and ignorance. Analytic insights have been constricted, mystical, and wishful.

For example, religious dogma has dealt endlessly with the phenomenon of death, but little with age. Aging as a religious theme has been invested generally with the notion that old age is a punishment for sins, original or otherwise. We have been made to fear the unknowns of death disintegration. Depending upon the sin content of our earthly existence, hell, purgatory, or heaven has been offered as our ultimate path. Given this premise, gerontophobia was logical. Catastrophes such as the plagues which swept the world during times past were viewed as theological events. Although most creeds generally include belief in immortality as an essential ingredient of faith, our yearnings for it have never seemed to carry much conviction. Our instincts for indulgence and self-destruction seem more deeply ingrained than are our hopes for longer lives. Alex Comfort wrote, “Public concern for longevity does not extend to making oneself uncomfortable.”

We seem to avoid the subject as much as we can. The youth cult is not a twentieth century fixation. We have always exalted the young; aging has always been a taboo. Proust wrote that we tend to deal with aging only in abstract. Robert Butler, first director of the National Institute on Aging, says that we deal with aging like the Victorians dealt with sex. Erica Jong calls age an embarrassment.

Aging as a part of life has rarely attracted artistic or literary attention. Old age is underrepresented in cultural expression. The Picture of Dorian Gray, On Golden Pond, Cocoon, and Golden Girls are noteworthy exceptions. Shakespeare presented King Lear as that “ruin’d piece of nature.” Aging is not good box office. A recent article by Walter Goodman in The New York Times suggested that characters generally treat old age in “the comical-sentimental mode, easy to swallow, like the coated drugs that some old people live on.” Grandparents are usually presented as “doting and somewhat disconnected”—like a different species.

The Doctors Who Peddle Youth

My profession has contributed to the malaise in that the scientific study of aging has often been the province of charlatans and hucksters. Every imaginable incantation, potion, and surgical maneuver
has been proposed in the name of rejuvenation. Much of this arose in the context of perpetuating or recapturing sexual capacities—potency for the male, physical attractiveness and secondary sexual characteristics for the female. Sex and ideas of aging are intimately mixed.

One such example concerns the legendary oldster Tom Parr. His autopsy, performed by the great anatomist and surgeon William Harvey, made particular mention of Parr’s “well developed and heavy testicles.” For years this observation, along with the inaccuracy of Parr’s life span, has been taken as incontestable proof that there exists a relationship between longevity and the internal secretion of endocrine glands, in particular the sex glands. Around 1400 BC, the Indian physician Susutra recommended that his patients eat the reproductive glands of young tigers to overcome impotency.

One thing the youth doctors have never lacked is creativity. On June 1, 1889, Professor Charles Eduoard Brown-Sequard, pupil of the godfather of physiology, Claude Bernard, addressed the Societe de Biologie in Paris. Brown-Sequard was then 72 years of age. He described his personal rejuvenation (i.e., regaining his potency) after having injected himself with fluid extracted from crushed dog testicles. The reaction was intense. Soon physicians worldwide were injecting patients with extracts from various animals’ organs and glands. One such imitation therapy was the work of the renowned Serge Voronoff, an expatriate Siberian physician, who in 1900 felt that only monkey glands made effective stimulants. Monkeys became scarce shortly thereafter. Today the absurd notion that pulverized rhinoceros horn is an aphrodisiac has nearly doomed this noble beast.

In the United States, John Romulus Brinkley of Milford, Kansas, developed a technique for inserting whole goat testes into human scrota. It is estimated that from 1915 to 1942 he grafted 16,000 goat testicles.

The most incredible link in this chain of pseudoscience was yet to come. Back in Europe, a Swiss surgeon, Paul Niehans of Vevey, entered the field of rejuvenation. Niehans had studied with Voronoff, who had since fallen from esteem among his colleagues. Nonetheless, early in his career Niehans had grafted parathyroid gland tissue into a patient with parathyroid deficiency. The patient made an excellent recovery, thus baffling every conventional corrective remedy and prompting the amazing career which followed.
In 1948, Niehans began using cells from lamb fetuses for the purpose of rejuvenation. Before dying at the age of 86, Niehans had treated 40,000 patients, many of whom were world renowned. Winston Churchill, Gloria Swanson, and Somerset Maugham were among the most notable. Probably the most famous case was that of Pope Pius XII, who at age 78 summoned Niehans to Rome. The Pontiff was believed to be dying of gastric problems or some obscure kindred disorder, and upon two separate occasions Niehans guided him to recovery. The ranks of the faithful grew.

In April 1987 I visited the Niehans Cellular Therapy Clinic in Vevey. It was maintained by his daughter, having previously split from the proprietor of the original clinic several miles away. The present facility is located in an elegant hotel on the banks of Lake Geneva and provides a glorious view of the Alps. The charge for the basic package of seven days, six nights was then 6,600 Swiss francs (approximately $3,000). The cellular therapy could be supplemented with “bioenergetic treatments” such as acupuncture (of the traditional Chinese, electric, and laser varieties), shiatsu (a Japanese treatment also known as acupressure), injections of procaine (a local anesthetic), and aromatherapy (consisting of massage and compresses with vegetable and plant essences). These cost extra.

An Internet search reveals that the clinic still thrives. In fact, it received the award in Monte Carlo of the “best health spa.” Its prices depend on which pamperings are selected, but may reach tens of thousands of dollars.

Currently most of the clinic’s patients come from the Middle East and Central America.

I did not take the treatment.

The most famous of recent wizards was Ana Aslan of Budapest. Her potion of Gerovital, vitamin H3, is composed nearly exclusively of novocaine (the common local anesthetic) and small amounts of benzoic acid and potassium metadisulphate. Among her patients Aslan numbered Nikita Khrushchev, Charles de Gaulle, and Ho Chi Minh. A recent full page newspaper ad was headlined, Doctor’s Rumanian Youth Restoration Formulas Seem to Defeat Aging. Another sound bite reads, “Possibly the most exciting remedial discovery for mankind since the principles of hygiene were reluctantly accepted by the medical profession.” But hurry, because “supplies are limited.” Unfortunately, neither Aslan’s nor Niehans’s patients have been shown to live to extraordinary old age—the oldest of Niehans’ followers is 92.
There is a reason, however, why youth doctors should make a difference. This difference is rooted in the placebo effect. As I will explore later, aging is to a major extent a quality of the mind, and as such is susceptible to a large degree of mental imprinting.

The situation is readymade. The eager and susceptible come humbly seeking a gift of nature, the restoration or extension of youth. They are met by a strong, promising figure who holds out the possibility of new vitalities, recapture of lost opportunities, and revisit of yesterday’s horizons. The tactic is invested with sufficient hierarchical mystique to tempt and convince. Conviction is a major part of cure, and every controlled hard science research project must factor in the reality of the placebo effect. The effect is at its most potent under just these circumstances. And as someone once wisely observed, no hometowners have ever been cured at Lourdes.

It is unfortunate that there are no sound studies of glandular therapy, Gerovital, or anything else which claims rejuvenation. One would presume that if the partisans of these immensely successful commercial enterprises were truly committed to the products and ideas they promulgate, they would seek confirmation of the effects in the scientific community by performing double-blind studies in which neither the subject nor the experimenter knows which is the real test compound. Sadly, the absence of such efforts implies that the youth practitioner cares more for the preservation of the mystique and its attendant rewards than for the assertion of real truth.

If the myriad anecdotes of the wonders of the youth doctors were valid, such examples would account for more than the placebo effect, which causes sugar pills to work 10 to 20 percent of the time (for whatever condition they are prescribed) merely because of the strength of positive thinking. Those who attend today’s health and beauty spas do so in an effort to find a second adolescence, a second puberty. The multibillion-dollar cosmetic industry feeds on their lust for rejuvenation.

Where is the Hand of Hard Science?

Pseudoscientific approaches are the heritage of aging research because sound science has been slow to address the issue of aging. The word *geriatrics*–the medical aspects of aging–was first coined by Dr. D. G. Nascher in 1914. The National Institute on Aging was founded as recently as 1974. The American Geriatrics Society was
founded in 1942, the Gerontologic Society of America a short time later. To put this timetable in perspective—the American Medical Association was founded in 1843.

Still, geriatrics is part of the curriculum in only a minority of our nation’s medical schools. The first professorship of geriatrics was established at Cornell in 1978; the first department in a medical school, at Mt. Sinai in 1983. Geriatrics has no honored traditions. Everyone in the field is still a pioneer.

Until now, the issue of aging has not had significant impact on American social and political policy. When I recently traveled to Africa, I observed a different experience. Repeated inquiries of “How are you handling the old people?” were greeted by blank unresponsiveness. It seemed an irrelevant question. It wasn’t that there weren’t any old people (10 percent of the Kalahari bushmen are over 70 years of age), but they were not perceived as being a group set apart. Not a “them or us” situation—only “us.”

But for the Western world the emergence of the compelling demography listed at the beginning of this chapter creates an awareness and urgency which Anne Somers of Rutgers University has appropriately termed the “Aging Imperative.” We face this imperative ill armed, without a satisfactory database or adequate social philosophy upon which we can create policy. This policy is not just for “them,” the aged, but for all of us. It affects decisions at every level of involvement—personal, community, national. Arnold Toynbee remarked, “A society’s quality and durability can best be measured by the respect and care given to its elder citizens.” We now have the opportunity—the mandate—to discharge this responsibility intelligently and ethically. As the popular cartoon character Pogo might say, “I have met the elderly and they are us.”

A More Productive Outlook

An issue of *Daedalus*, the publication of the American Association of Arts and Sciences, was entitled “The Aging Society.” It consisted of a series of excellent essays compiled by Alan Pifer and Lydia Bronte of the Carnegie Foundation. Its main message was that we are living an historic moment—a moment when a new, third age of life is appearing. Until the present there were only two ages, youth and adulthood—youth consisting of the years from birth to 20 years, adulthood lasting from the ages of 20 to 65 or so. Youth was characterized by growth,
learning, and maturing. Adulthood involved productivity, reproduction, and youth care. At approximately 65 years, we died—erratically, but with high probability. Survivors past 65 were rare, but during the late nineteenth century they became common enough for Prince Otto Von Bismarck, chancellor of the German Empire, to propose a social security system for that individual who unexpectedly lived beyond the second age of life. Five decades later, our nation followed suit, instituting our own social security system to help support those few who didn’t die according to the predicted schedule. Medicare followed in 1965 to heal the ailing survivors.

We now identify the falseness of this model. Not only are a few of us living beyond age 65, tens of millions are. There are 100 million Chinese over 65. Also on the Asian continent, 54 million Indians and 26 million Russians live past this benchmark. Here in America, 35 million people are older than 65—that’s more than the entire population of Canada. Calculate the number of those who reached age 65 during the past 100 years and you would have a sum equal to the number of people over age 65 who existed on the planet for all of previous history. By the year 2035, one in every four Americans will be over 65. The average family will have four generations.

The Third Age—A New Life Segment

We have most recently inherited a new life segment—the third age. This new phenomenon has burst upon us bringing with it new decades of opportunity, and (somewhat ominously) the potential for profligate waste. We are not prepared.

In part this is because the new third age lacks definition—biologic, psychological, sociologic, economic, and political. We have no encyclopedias, textbooks, experiments, or models to guide us to our new age. The chances for interage conflict are real. The younger generations do not defer to the older simply because they are older—some equity of resource allocation is sought. We are ill armed to confront the novel challenges. We lack a conceptual framework as to what our new years can and should represent. In effect, we are in the position of defining our new, complete life. Until now everything has been an artifact. We confront the potentials of our full lives for the first time in the history of our kind. This, now, is one of the most significant epochs of the human species.
Our first challenge is to recognize our 120-year natural lifetime and redefine its subsegments. There are three segments of life: youth, middle age, and old age. Youth is 0 to 40 years, middle age is 40 to 80, and old age 80 to 120. Each major segment is then halved to produce the following segments:

GRAPH:
1. Youth
 - young (020)
 - old (2040)
2. Middle Age
 - young (4060)
 - old (6080)
3. Old Age
 - young (80100)
 - old (100120)

No one should die until old, old age—over 100 years. Any earlier deaths are premature. As I recently passed my 77th birthday, it is like a golfer on the 12th hole.

If we plotted the longevity of plates in the dishwasher as an exercise in random statistics, we would see a survival slope as follows:
Until recently, human longevity curves have resembled this same “triangular” pattern—not much different from projections of the “life span” of a set of dinner plates.

Clearly our present goal should look very different. Ideally, each of us wants to live to our full design—the “rectangular” life span curve.

As we look at recent demographic data, we see that we are approaching the idealized rectangularized curve: more of us are living longer; but since 77 is the median year for death in America, most of us are still dying in old middle age. If we are dying at age 77 and have a potential of 120 years, we are faced with a current shortfall of 43 years! Our machine is only partway through its work time. We die too soon.
Index

A
Aaron, Henry, 43
ABA model, 87–88
Abler, Dore, 220
Abram, Morris, 246–247
Acetylcholine
absence, impact, 91
impact, 177
Active euthanasia
procedures, 247–248
support, 248
Active life expectancy, 131
Activity. See Inactivity
benefit, 193–194
impact. See Sleep
prolongation, 182
usefulness. See Physical activity
Adams, David, 136
Adams, James, 160
Adams, John, 177
Adrenal glands, stimulation, 110
Adulthood, generative responsibility, 218
Adverse outcomes, impact, 111
Age
changes, 8
coping, 219–221
energy/matter/time, equation, 21–22
heat loss, impact, 27
impact. See Brain
prediction, 104–106
prophecy, fulfilling
families. impact, 94–95
society, impact, 95–97
rationing, 245
relationship. See Oxygen volume
success, steps, 271–272
vitamin pill, impact, 30–31
Age Age, 2–3, 20
epoch, 256
justification, 133
knowledge, 249
Age Constitution, 259–260
Age Corps, 260
Aged, definition, 261–262
Age labels, 2
Age-related sleep disorders, 211–214
Aging. See Precocious aging;
Productive aging; Responsible aging; Successful aging
breakdowns/inertia, 206
cause, understanding, 10
community, relationship, 265–266
cultural expression, underrepresentation, 11
deceleration, cooling (impact), 29
defining, 20
examination, 86–87
fear, 64, 83–84
female sexuality, relationship, 148–150
governmental impact, 261–265
hard science, impact, 14–15
high-tech solution, 127–128
impact. See Learning; Memory
absence, 15
male sexuality, relationship, 142–145
message, failure, 87–88
negative imagery, 88
old ideas, 10–11
plasticity, 223
process, alteration, 36–37
productive outlook, 15–16
prophecy, fulfilling
families, impact, 94–95
society, impact, 95–97
prophets, impact, 123–125
reasons, 19
relationship. See Aging; Death; Sex
responsibility, 270–271
retardation, 205
self-fulfilling prophecy, 83
sexuality, relationship, 135
significance, loss, 97
strategy, 259–260
success, elements, 216
temperatures, variation (impact), 28–29
Aging brain, 165–180
Aging humans, implications, 101–102
Aging Society, The, 5, 257
Agricultural Revolution, 184
impact, 115
Alcohol, excess, 142
Alcoholic drinks, daily restriction, 67
Alderman, Edwin, 124
Alertness ratings, 179
Alzheimer, Alois, 88
Alzheimer’s disease (AD), 88–89, 269
diagnosis, elimination, 90
factors, 91–92
nursing home population, percentage, 89
origins, possibilities, 91–92
pain, levels, 93–94
performance, deterioration, 92
personal approach, 89–91
progression, 93–94
self-doubt, 176
silent epidemic, 88
treatment, 90–91
Amala, primitive behavior, 163–164
American Association of Retired Persons (AARP), 261
Amiel, Henri, 1, 19
Anatomy of an Illness (Cousins), 220
Andres, Ruben, 199
Anesthetics, curative ability, 57
Anger, reduction, 272
Annual physical exam, technique, 81–82
Antibiotics
curative ability, 57
impact, 57–58
Antidepressants, impact, 129
Antioxidants, 206
Apocalypse (horsemen/riders), 3, 48
Appestat, 200
Arterio-sclerotic heart disease, impact, 82
Asher, Richard, 125
Aslan, Ana, 13
Aspirin myocardial infarction study (AMIS), 103–104
Astrand, Olaf, 192
Athletes. See Master athletes
non-athletes, mental reaction times (comparison), 169
Atkins, Peter W., 24, 27
Atlas, Donald, 230
At risk driver, 229
Australian Aboriginal, The (Basedow), 100
Autonomous existence, 227
Avorn, Jerry, 225, 245
B
Back to Methuselah (Shaw), 168
Bacon, Roger, 27
Bailey, Bill, 27
Baltes, Paul, 173
Bandura, Albert, 220, 223
Index

Bannister, Roger, 236
Barchas, Jack, 157, 167
Barnaby Ridge (Dickens), 172
Barth, Eric, 159
Baruch, Bernard, 166
Basedow, Herbert, 100
Bashore, Theodore, 174
Bawden, Nina, 85
Beach, Frank, 143
Beard, Belle Boone, 231
Behavior
 characteristics, 188–189
 influence, ability. See Root behavior
Belief system
 presence. See Humans strengths, 98–99
Benham, Ed, 232
Berkman, Lisa, 268
Bernard, Claude, 12
Berwick, Don, 43
Biochemistry, 197–198
Bioenergetic treatments, 13
Biologic clock, 208–210
 phase advancement, 212
Biologic outcome, emotional prediction (impact), 97–101
Blair, Steven, 186–187, 189
Blood
 glycerine/DMSO replacement, 28
 pressure, 188
 side effects. See High blood pressure
 vessel system, deterioration, 123
Blythe, Edward, 109, 116
Body function, physical exercise
 (restorative effects), 132
Body weight, average, 67
Bones, thinness, 125–126
Booth, Frank, 131
Bortz hypothesis, 83–84
Bortz II, Walter M., 61
 American Geriatrics Society president, 105
Boskin, Michael, 263
Bottiger, Lars, 194
Bowen, Otis, 261
Brain. See Aging brain
 aging, decline (evidence), 169–170
 anatomy, decrements (recording), 170
 biology, review, 175–176
 chemicals, reduction, 129
 complexity, 175
 computer, analogy, 157–158
 death, 248
 embryonic development, 158
 environment, impact, 164
 function
 decline, age (impact), 169–172
 increase, physical exercise (impact), 174–176
 growth, 158–159
 testosterone, impact, 161
 loss
 disuse/disease, impact, 176
 intellect (areas, involvement), 176
 moldability, 164
 plasticity, 167, 170
 power, 157
 protein synthesis, puromycin/cyclosporin (impact), 168
 relationship. See Disuse
 resource, importance, 153–165
 size, 154–155
 stimulation, 175
 response, 168–169
 tricks, 172–173
 usefulness, 153
Brain dead, declaration, 240
Brain development, 158–159, 175
 continuation, process, 159
 deprivation, relationship, 162–163
extremities, 160–162
Breakfast, regularity, 67
Brecher, Edward, 139
Breslow, Lester, 66–67, 187
Bretscheider, Judy, 140
Brief History of Time, A (Hawking), 22
Brinkley, John Romulus, 12
Brody, Harold, 169
Bronte, Lydia, 15–16
Brooks, Marvin B., 142
Brown-Dequard, Charles Eduoard, 12
Bruce Jenner Protocol, 190
Bruner, Jerome, 153
Buffon, George, 7, 9, 31, 34
Burnout, 21
Burns, Benedict D., 166
Burns, George, 237
Bushmen (Kalahari)
 eating habits, 112, 272
 mileage, coverage, 113
Butler, Robert, 5, 11, 257
 bereavement estimates, 101
C
Cabot, Richard, 197
Cain, Jim, 234
Cajal, Raymon y, 166–167
Callahan, Daniel, 48, 244–246, 261–262
Calment, Madame (life span), 6
Caloric intake, reduction (impact).
 See Life
Calories, ingestion, 126
Calories Don't Count, 199
Cancer
 impact, 51–53
 relationship, See Exercise
 side effects, 128
 survival, 52
Cannon, Walter, 99–100
Capture myopathy, 113
Cardiovascular conditioning, 191, 192
Cardiovascular vulnerability, 130
Career/money, preoccupation, 142–144
Caring, importance, 103
Carrell, Alexis, 8–9
Carstensen, Laura, 172
Catastrophes, 11
Catecholamines
 impact. See Depression
 reduction, 129
Cazalis, Henry, 49
Celebration of Life (Cousins), 37
Cells, doubling, 9
Cells, longevity. See Controlled
 environments
Cellular therapy, 13
Centenarians
 characteristics, 231
 Social Security Administration
 interviews, 230
 success, 230–232
Challenges, acceptance, 272
Chang, Wang Ching, 235
Channing House, 151
Childbearing, delay (social trends), 138
Cholesterol, 188
 amount, determination, 202
 control, 202
 formation, 208–209
 impact, 201–202
 quality, 202–203
Choline, impact, 91
Christian Scientists,
 behavior/beliefs, 98–99
Chronic conditions, impact, 182
Church of the Seventh Day
 Adventist members, life span, 58
Cicero, Marcus Tullius, 184
Circulatory changes, aging
 (impact), 124
City of Joy, The (Lapierre), 240
Clark, Etta, 234–235
Clinton Health Care Plan Proposal
(1993), impact, 61
Cloning, concept, 37
Clotability, increase, 124–125
Cloud, The (Shelley), 271
Clough, Arthur Hugh, 247
Cognitive function, 178
Cognitive loss, experience, 175
Collier, Timothy, 175
Colon, cancer, 189
Colton, Charles, 177
Coming of Age, The (de Beauvoir), 228
Community, relationship. See Aging
Computer, analogy. See Brain
Computerized axial tomography (CAT), usage, 156
Conceptual Blockbusting (Adams), 160
Conditioning. See Cardiovascular conditioning
Confidence. See False confidence
Conforming, convention, 116
Confucius, 207–208, 271
Connelly, Martin, 257
Constant energy flow, 26
Continuous learning, case, 166–169
Control, importance, 222–223
Controlled environments, cells (longevity), 8–10
Coolidge, Mr./Mrs. Calvin, 143
Coolidge Effect, 143
Coping, importance, 220
Coronary arteries (expansion), exercise (impact), 124
Cottman, Carl, 175
Counter-entropic capacity, 31
Counter-entropy, 35
Cousins, Norman, 37–38, 220, 238, 265
pessimism, comment, 97
Coverage, denials, 263
Crapo, Lawrence, 5
Creative Aging (Bortz), 228
Crenshaw, Theresa, 149
Critical care unit (CCU), responsibility, 49–51
Cross-linkage super-oxidation, 30
Cryolongevity, 28
Cure
agents, 57
illusion, 57–61
orientation, 64, 70–77
Currens, James, 123–124
Cutler, Richard, 7
Cutler, Winnifred, 135–136
Cybernetics, 157–158
Cyclic AMP (cAMP), addition, 168
Cycling, energy flow (impact), 26
Cycling Theorem, 26–27
D
Daily activities, 195
Damrosch, Walter, 230
Darwin, Charles, 7, 109, 116, 185, 220
Davidson, Julian, 136, 148
Dealing with Memory Changes as You Grow Older (Gose/Levi), 178
Death
aging, relationship, 35–37
branch point, 270
certificates, examination, 213
concept. See Ideal death
coping, 249–252
defining, 239–242
definition, 238–239
facilitation, question. See Natural death
factors, 102–104
last passage, 237
rates, 186
production, 102
response, 86–87
shock, 102
de Beauvoir, Simone, 228
Debush, Robert, 236
Deep sleep, increase, 208
Deficiencies, incidence, 203
De Leon, Ponce (fountain of youth search), 19
Demar, Clarence (autopsy findings),
123–124
Dement, William, 211
Dementia, result/cause, 91
Demographic shifts, 266
Deoxyribonucleic acid (DNA),
wear/tear (signs), 30–31
Depression, 130
acting out, 96–97
catecholamines, impact, 129–130
impact, 171–172
prevalence, 151
Deprivation, relationship. See Brain
development
de Reynier, Eric, 234
Descartes, Rene, 117
Devey, Edward, 9–10
DeVries, Herbert, 122
de Wachter, M.A.M., 248
Diabetes, 130. See also Old age dia-
betes
epidemic, cause, 127
impact. See Impotence
response, 73
side effects, 128
Diabetes Danger (Bortz II), 61
Diamond, Jared, 65
Diamond, Marian, 160, 166, 170
Dickens, Charles, 172
Diderot, Denis, 199
Diet
amount, 200–201
dogma, 198
food, selection, 203–204
importance, 181
restrictions, 206
selection, 198–200
usage, 197–206
Discomfort, minimization, 182
Disease
classical medical model, differ-
entiation, 110
detection, 182–183
prevention, 56
Disengagement approach, 226–227
Disruptive behavior, 224
Disuse
aging, relationship, 119
brain, relationship, 128–129
debilitation, 267
depression, relationship,
129–130
destructive force, 109
impact. See Brain; Intellectual
decline
interest, 111
phenomena, interest, 117–118
relationship. See Fuel supply
space (frontiers), impact,
118–120
Disuse Syndrome, 130–131
Dolphin, brain size, 154
Donne, John, 107, 253
Don't Forget (Lapp), 178
Dorman, Samuel Shaw, 113
Down’s syndrome (mongolism),
genetic problem, 92
Dreams, impact, 207
Drug use, prevalence, 151
Dubos, Rene, 71, 181, 238, 250
Dustman, Robert, 174
Dyftwald, Ken, 86
Dying
coping, 249–252
cost, 44, 242–245
expression, 245–247
Dyson, Freeman, 21, 29
Dyusamo, Belayneh (marathon
record), 121
E
Earth, surface (physical system), 26
Eating habits. See Bushman
Economos, Angelo, 31, 35
Eddington, Arthur, 21, 27
EEG. See Electroencephalograph
"Effect of Diet on Metabolism of
Fat in Man, The" (Bortz II), 198
Ego chill, 250
Einstein, Albert, 157
Index 281

genius, question, 160
sleep, 210
Eisdorfer, Carl, 262
Eiseley, Loren, 112, 116
Ejaculatory demand, reduction, 137
Ejection fraction, 50
Elder hostels, success, 267
Electrocardiograph (EKG), usage, 82–83
Electroencephalograph (EEG), usage, 210
Elwood, Paul, 60
Emergency room (ER), usage, 49–50
Emotional liability, 211
Endocrine gland, stimulation, 132
Energetics, 222
Energy
conservation, 22
defining, 23–24
destructive impact, 110–118
impact, 21–22. See also Stress ordering effect, 108
source, 26
addition, 168–169
Energy flow. See Constant energy flow
impact. See Cycling; Feedback ordering, impact, 107–108
targeting, 167
Engle, George, 101
Entropy, A New World View (Rifkin), 132
Entropy (decay), 23, 107
deceleration, value, 29
force, 27
Environment, interaction (efficiency), 222
Environmental cleanup/protection, 268
Environmental pollution, worsening, 42
Erectile competence, 146
Erhard, Werner, 106
Erikson, Erik/Joan, 216–218, 222–223, 227–228, 262, 266
life phases, 270
Estrogen replacement therapy, usage (restriction), 149
Etheredge, Lynn, 261
Euthanasia, procedures. See Active euthanasia
Evans, William, 128
Evolutionary pattern, theories, 111–112
Exercise
amount, 192
benefits, denial, 185
cancer, relationship, 189
cultural bias, 184–185
heart disease, relationship, 189–190
impact. See Coronary arteries; Life
importance, 181, 183
increase, impact, 129
intensity, 192–193
nutrition, impact, 207
patterns, 271
purposes, 191
RDA, 190–191
rhythm/vigor, continuation, 271
selection, 190–192
types, excellence, 193–197
usage, 183–197
Exercise Myth, The (Solomon), 185
Expenditure, impact. See Life
Experience of Dying, The (Patterson), 241
F
Failure, fear, 142, 146
False confidence, 65
Family
member, desire, 220
responsibility, reward, 264
role, 269–270
Fat, carrying, 201–202
Fatalism, impact, 64, 79–80
Fates, impact, 10
Fatigue, impact, 171–172
Feedback
control mechanisms, energy flow
(impact), 26
loop. See Positive feedback loop
Female/male responsiveness,
anatomic similarities, 149
Female sexuality, relationship. See Aging
Fifty Plus Running Association (sexual activity questionnaire), 141
Fight or flight behavior, 99, 101
Finances, mistake, 220
Financial incentives, impact, 64, 77–79
Fixx, Jim, 50, 237
death, 185
Food
centrality, 115
excess, 142
selection. See Diet
Footsteps, importance, 112
Formula for Life: The Anti–Oxidant, Free Radical Detoxification Program (Kronhausen), 205
Frain, Lyman, 234
Frank, Jeremy, 103
Freeman, Walter, 26
Fretz, Bruce, 220
Freud, Sigmund, 137
Fries, James, 5, 131
Frisch, Ray, 189
Fuchs, Victor, 58, 266
Fuel supply, disuse (relationship), 127
Fuller, Buckminster, 166

G
Gardner, John William, 96
Gardner, Sandy, 211
Gates, R. Ruggles, 164
Gaussian curve (bell curve), 87–88
Gavrilo, Leonid/Natalia, 35
Geller, Harvey, 81
Generativity, 218
Genetic messages, printout, 158
Genius
ability, 161–162
accomplishment, 160–161
identification, 160
Geriatric Grand Rounds
Conference, 144
Geriatric obstetrics, 138
Geriatrics, coinage, 14–15
Gerontologic Society of America, 15
Gerontophobia, 11
Gilmour, John, 233
Glenn, John, 118–119
Glucose tolerance, 188
Goals, setting, 272
Goldberger, Ary, 25–26
Good health
habits, definition, 67
importance, 216
strategy, prevention (factors, impact), 64
Goodman, Walter, 11
Gorer, Geoffrey, 241
Gorillas (Rwanda), observation, 112–113
Gose, Kathleen, 178
Gould, Stephen Jay, 38, 154–155
interpretation. See Intelligence quotient
Governmental impact. See Aging
Grand-generativity, 218
Gravity, offsetting, 118–119
Graying, vanity, 255
Gray Panthers, 225, 257
Great Rift, 112
Greening of America, The (Reich), 270
Growald, Eileen Rockefeller, 268
Growing Old Is not for Sissies (Clark), 234–235
Guilt, sexual expression (relationship), 137
Guinness Book of World Records, 3
Index 283

H
Haldane, Eugene, 57
Hamlet (play), 107
Happiness, importance, 216
Hard science, impact. See Aging
Harmon, Dennis, 30
Harris, Lou, 184
Haskell, William, 188
Hawking, Stephen, 22
Hawthorne effect, 103
Hayflick, Leonard, 8–9, 37–38
Health. See Good health
achievement, process, 183
exam, payment, 77
guides, impact, 74
habits. See Personal health
habits
hoarding, 64
preservation/promotion, logic
(failure), 87–88
responsibility, misplacement, 64,
66–68
self-efficacy, impact, 221–222
simplicity, 64, 68–70
Health care
expenditure, 42
high cost, 42–44
professional, relationship. See Sex
provider/consumers, terms
(usage), 71
Health maintenance organization
(HMO), problems, 77–78
Health of Nations, The (Sagan), 43
Heart
muscle strength, 188
problems, side effects, 128
pump failure, 50
trouble, impact, 51
Heart disease
impact, 49–51
relationship. See Exercise
Heat loss, impact. See Age
Helpless/hopeless syndrome,
102–103
Helton, Roy, 22, 36
Henderson, Brian, 189
Hereditity, discussion, 39
Hibernation, 29
High blood pressure, side effects,
128
High density lipoprotein (HDL),
188, 202–203
measurement, 83
Hip fractures, 125–126
mortality rate, 54
Hirsch, Calvin, 110–111
Hoffman, Edward, 162
Holmes, Oliver Wendell, 63, 252,
257
Homeostasis, 108
Homo sapiens, identification, 153
Horne, James, 207–208
House, James, 267
Human growth hormone, impact,
127–128
Human Options (Cousins), 87
Human Population Laboratory, 187
Humans
body, design, 1–2
characteristics. See Primitive
humans
illness, belief system (presence),
99
life span, defining, 3
Humans, implications. See Aging
humans
Human sleep pattern, 210
Humor, maintenance, 272
Hunter-gatherer era, 115
Huxley, Julian, 159
Hyndam, Eleanor, 234
Hypertension (treatment), beta
blockers (usage), 150
Hypertrophy, exhibition, 170
I
Iatrogenic illnesses, 59
Ideal death, concept, 252–253
Igarashi, Tesicki, 34
Illich, Ivan, 241
Illness
impact, 171–172
presence. See Terminal illness
Immobility, deteriorative effects, 229
Immortality
discussion, 37–39
search, 19–20
Immune responsiveness, maintenance (improvement), 32
Immunity, nonapplication. See Self-destruction
Immunologic capacity, 188
Impotence
diabetes, impact, 144
fear of failure profile, 146
mechanical approach, 147
treatments, 145–148
Impotence Foundation, 142
Inactivity, 118
lifetime, 190
minimization, 182
relationship. See Obesity
Inadequacies (perception), physiologic response (conditioned alteration), 223, 236
Independent living, 227–228
ability, 182
Index Medicus, 74
Individual responsibility, reward, 264
Industrial Age, 184
Infectious diseases, conquest, 42
Information curve, change, 46–47
Insomnia, 73, 213–214
Institutionalization, avoidance, 182
Intellectual ability, decline, 172
Intellectual decline, disuse (impact), 172–173
Intellectual development, nature/nurture (discussion), 163–164
Intelligence quotient [IQ]
credentialing, 165
decline, 170
exercise, impact, 174
Gould interpretation, 165
increase, 168
longitudinal study, 171
Intestinal absorption, abilities (change), 203
Intestinal intolerance, 204
Isumi, Shigechiyo (life span), 6
J
James, William, 271
Jefferson, Thomas, 177
Jerison, Harry J., 154–155
Jet lag, 209–210
Jogging, usefulness, 195
Johanssen, Don, 112, 154
Johnson, Virginia, 135
Jong, Erica, 11
K
Kagnoff, Arona, 146
Kaiser, Henry J., 78
Kaiser Permanente Health Plan, initiation, 78
Kamala, primitive behavior, 163–164
Katz, Sidney, 131, 188
Kaye, Danny (happiness), 104
Kinsey, Alfred, 138–139
Kivnick, Helen, 217, 218
Klein, Helen, 232
Knowledge
base, change, 46–47
impact. See Life
increase, 45–47
Knowles, John, 60, 64
Kraus, Hans, 131
Kronhausen, Eberhard, 205
Kuhn, Maggie, 225–227
L
Ladakh, shaman (observation), 98
Index 285

Lahey, Frank, 57
Lamm, Richard, 42–43, 239
Langer, Ellen, 222, 224, 225
Lapierre, Dominique, 240
Lapp, Danielle, 178
Lashley, Carl, 156
Lawry, Gabriel, 143
Laziness, 118
Leaf, Alex, 3–4
Leakey, Mary, 112
Leakey, Richard, 2, 115
Learning
 capacity, aging (impact), 165–166
 case. See Continuous learning
 outcome, improvement, 173–174
 process, question, 157–158
 relationship. See Motivation
Lecithin, usage, 91
Lee, Russell, 95
Legal involvement, high cost, 45
Lemke, Leslie (piano playing), 161
Lenard, Lane, 156–157
Leveton, Alan, 250
Levi, Gloria, 178
Libido, absence, 148
Life
 breath, impact, 24–25
 correlation, Metropolitan Life
 Insurance Company, 39
 defining, 20
 disease, fatality, 41
 environmental enrichment, impact, 166
 expectancy, 188, 238. See also
 Active life expectancy
 extension
 exercise, impact, 186–189
 knowledge/expenditure, impact, 47–48
 good news, 55–57
 lengthening, caloric intake
 reduction (impact), 31–34
 order, deterioration, 108
 physics, 24
 quality, estimates (reliance). See
 Quality of life estimates
 saving, 48
 third age, appearance, 15–16
 Life insurance, premiums, 82
 Life/living design, 260
 Life span
 biostatistical maneuvers, 6–7
 defining, 5. See also Human life
 span
 longevity/skeletal maturation, 7–8
 normalcy, 33
 observational data, 6
 prediction, 5–10
 Lifestyle, consistency, 135
 Lifestyle, evidence, 114
 Lindsay, Robert B., 273
 Linnaeus, Carolus, 162–163
 Living rate, theory (Pearl), 34–35
 Living to Be 100 (Segerberg), 230, 249
Longevity
 formula, search, 216–219
 maturation, 7–8. See also Life
 span
 predictor, 187
 secretion glands, relationship, 12
 sexuality, relationship, 151–152
 Louis Leakey Institute for the Study
 of African Prehistory, 111–112
 Lovejoy, Owen, 154
 Lubitz, James, 242
 Lukagiewicz, Julius, 45–46
 Lung cancer, incidence, 189
M
 Mace, Nancy L., 94
 MacLean, Duncan, 233
 Magenes, Ludwig, 234
 Magnetic resonance imaging
 (MRI), usage, 156
 Mainstream, alignment, 272
 Malacarne, Michele, 167
Male potency, alcohol (impact), 144
Male sexuality, relationship. See Aging
Malnutrition, 33
Malpractice insurance, increase, 45
Manton, Kenneth, 3, 264 projections, 6
Marsh, Anabel, 232
Mason, James, 70
Masoro, Edward, 32 restrictive feeding, interpretation, 34
Massachusetts Male Aging Study, 148
Master athletes, 232–235
Masters, William, 135
Master therapy, 227
Mastery experiences, set (creation), 223–229
Matter equation, 21–22 mind, impact, 97–101, 221–222
May, Rollo, 257
Mayer, Jean, 126, 200
Mayr, Ernst, 22
McCay, Clive, 31–32, 198, 206 principles, application, 33
McCoy, Norma, 140
Mean lifetime potential (MLP), 7–8 calculation, 9
Medical Aspects of Human Sexuality, 143
Medical care, improvement, 42
Medical care, rationing, 244
Medical care cost, contributions, 44
Medical Economics, 146
Medical knowledge, increase, 42
Medical Nemesis (Illich), 241
Medical practice, difficulty, 74–75
Medical profession/system, job, 55
Medical technology, rationing, 264
Medicare Drug Entitlement Bill, problems, 119–120
Medicated survival, 238

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male potency, alcohol (impact)</td>
<td>144</td>
</tr>
<tr>
<td>Male sexuality, relationship. See Aging</td>
<td></td>
</tr>
<tr>
<td>Malnutrition</td>
<td>33</td>
</tr>
<tr>
<td>Malpractice insurance, increase</td>
<td>45</td>
</tr>
<tr>
<td>Manton, Kenneth</td>
<td>3, 264</td>
</tr>
<tr>
<td>Marsh, Anabel</td>
<td>232</td>
</tr>
<tr>
<td>Mason, James</td>
<td>70</td>
</tr>
<tr>
<td>Masoro, Edward</td>
<td>32</td>
</tr>
<tr>
<td>Massachussetts Male Aging Study</td>
<td>148</td>
</tr>
<tr>
<td>Master athletes</td>
<td>232–235</td>
</tr>
<tr>
<td>Masters, William</td>
<td>135</td>
</tr>
<tr>
<td>Master therapy</td>
<td>227</td>
</tr>
<tr>
<td>Mastery experiences, set (creation)</td>
<td>223–229</td>
</tr>
<tr>
<td>Matter equation</td>
<td>21–22</td>
</tr>
<tr>
<td>Mind, impact</td>
<td>97–101, 221–222</td>
</tr>
<tr>
<td>May, Rollo</td>
<td>257</td>
</tr>
<tr>
<td>Mayer, Jean</td>
<td>126, 200</td>
</tr>
<tr>
<td>Mayr, Ernst</td>
<td>22</td>
</tr>
<tr>
<td>McCay, Clive</td>
<td>31–32, 198, 206</td>
</tr>
<tr>
<td>Principles, application</td>
<td>33</td>
</tr>
<tr>
<td>McCoy, Norma</td>
<td>140</td>
</tr>
<tr>
<td>Mean lifetime potential (MLP), calculation</td>
<td>7–8</td>
</tr>
<tr>
<td>Medical Aspects of Human Sexuality</td>
<td>143</td>
</tr>
<tr>
<td>Medical care, improvement</td>
<td>42</td>
</tr>
<tr>
<td>Medical care, rationing</td>
<td>244</td>
</tr>
<tr>
<td>Medical care cost, contributions</td>
<td>44</td>
</tr>
<tr>
<td>Medical Economics</td>
<td>146</td>
</tr>
<tr>
<td>Medical knowledge, increase</td>
<td>42</td>
</tr>
<tr>
<td>Medical Nemesis (Illich)</td>
<td>241</td>
</tr>
<tr>
<td>Medical practice, difficulty</td>
<td>74–75</td>
</tr>
<tr>
<td>Medical profession/system, job</td>
<td>55</td>
</tr>
<tr>
<td>Medical technology, rationing</td>
<td>264</td>
</tr>
<tr>
<td>Medicare Drug Entitlement Bill, problems</td>
<td>119–120</td>
</tr>
<tr>
<td>Medicated survival</td>
<td>238</td>
</tr>
</tbody>
</table>
Motivation, learning (relationship), 173–174
Mozart, Wolfgang (genius, question), 160
Multiple Risk Factor Intervention Trial (MRFIT), 187–188
Murphy’s Law, 21
Muscles, weakness, 125–126
Musculoskeletal fragility, 130
Muslimov, Shirlibaba, 4

N
NASA, health problems, 118–120
Nascher, D.G., 14–15
National Health Interview Study, 184
National policy initiatives, 259
Natural death, facilitation (question), 247–249
Negentropic device, 25
Nerve cells
division, cessation, 159
filaments, elongation, 158–159
Nervous system, development, 159
Neurobiology
basics, 156–157
frontiers, 155–156
Neurological connections, 159
Niehans, Paul, 12
Niehans Cellular Therapy Clinic, 13
Nocturnal penile tumescence (NPT), 145–146
Normalcy, measurement, 116
Novak, Mark, 10
NPT. See Nocturnal penile tumescence
Nutrition
impact. See Exercise science, 197–198
Nutritional adequacy, improvement, 42

O
Obesity, 130
caloric excess, 199
inactivity, relationship, 126–127
response, 72–73
survival, 200
Obligation, sense, 225–226
Ochsner, Alton, 57
Ochsner Sr., Alton, 75–76
Oerter, Al, 235
O’Keeffe, Georgia, 166
Okel, Ben, 68
Old, defining, 3–4
Old age, chart, 17
Old age diabetes, 127
Older persons
psychological inventories, 129
sexual attitudes, 139–141
treatment, 95
Older worker, changes (inevitability), 266–268
Oldest old, coping ability, 220
On the Origin of Species (Darwin), 109
Oracle of Delphi, 83
Orangutans (Borneo), observation, 112–113
Ordering, impact, 108. See also
Energy flow
Order Out of Chaos (Prigogine/Stengers), 23
O’Rourke, Paul, 102
Oscillatory cycle, 209
Osler, William, 95–96, 227
Osteoporosis, 125–126
Other Ways of Growing Old (Eisdorfer), 262
Outcomes, management, 60
Oxygen
movement, improvement, 122–123
necessity, 120
transfer, use, 120–123
Oxygen volume (VO2 max)
 improvement, 122
usage, 120–123
age, relationship, 122
Paffenbarger, Ralph, 186, 189
Page, Henry, 216
Paige, Satchel, 85
Painful Prescription, The
(Aaron/Schwartz), 43
Palmore, Erdman, 216
Palo Alto Task Force on Aging, 223
Parkinson’s disease, correction, 175
Parr, Old Tom (life span), 4, 12
Patterson, E. Mansell, 241
Pauling, Linus, 25
Peace Corps, seniors (serving), 267
Pearl, Raymond, 34, 39
Peek, Kim, 162
Pepper, Claude, 265
Performance
decline, 121
deterioration. See Alzheimer’s
disease
Personal health habits, 67
Persuasion and Healing (Frank), 103
Pfeiffer, Eric, 149–150
Physical activity
evolution, 114–115
usefulness, 67
Physical conditioning, optimum, 192
Physical distress, reduction (assurance), 182
Physical exams
sham, 64, 80–83
technique. See Annual physical
exam
Physical exercise
impact. See Brain
restorative effects. See Body
function
Physical fatigue, 142
Physical mobility, 228–229
Physical problems, 142
Physical work, cultural bias,
184–185
Pifer, Alan, 15–16, 257
Pills, impact, 72
Piva, ay, 232
Placebo effect, 14, 103, 204
Plemons, Judy, 173
Plimpton, George, 196
Polio, 55–56
Pope Pius XII, 13
Porath, Otto, 235
Positive emission tomography
(PET)
scanner, usage, 167, 169, 170, 177
usage, 156
Positive feedback loop, 167
Positive thinking, strength, 14
Powell, Richard, 174–175
Precocious aging, 130
President’s Commission for the
Study of Ethical Problems in
Medicine, 246–247
President’s Council on Physical
Fitness and Sports, 185
Prevention, 56
demonstration, 75
impact, 69–70
problem, 63
lectures, 63
Preventive medicine
logic, failure, 87–88
payment, determination, 79
Prigogine, Ilya, 21, 23–24, 107
insights, application, 51
Prihoda, Ronald, 242
Primitive humans, characteristics,
113
Principle of Invariance, 5–6
Principle of Least Effort, 116–117
Principle of Proper Mass, 155
Productive aging, 257
Prostate, cancer, 142
Protein restriction, 32
Proust, Marcel, 11
Provider-consumer
model, pharmaceutical industry
(impact), 71
Provider/consumer. See Health care

Pruyser, Paul, 87–88

Public hygiene, improvement, 42

Pygmalion (Shaw), 97

Pygmies and Bushmen of the Kalahari (Dorman), 113

Q

Quality of life
 defining, 245–246
 estimates, reliance, 60
 Quickfix cure orientation, problems, 73

R

Raab, Wilhelm, 131
Raffin, Thomas, 190
Rapaport, Stanley, 171
Rapid eye movement (REM), 146, 210
 decrease, 213
 reduction, 212
 sleep, 213
Rate of living theory. See Living rate
Recommended Daily Allowance (RDA), 198–199, 203. See also Exercise
 Recreation, 191
 Redundant capacity, 64–66
 Reich, Charles A., 270
 Reichel, William, 248–249
 Reincarnation, game, 104–106
 Relaxation, learning, 214
 Relman, Arnold, 61
 Renewal effort, 228
 Repetitive sex, boredom, 142
 Reproduction, 137–139
 Reserve capacity, 65
 Residue levels, toxicity (reduction), 32
 Respiratory arrest, 243
 Respiratory function, 188
 Responsibility, importance, 272
 Responsible aging, 257

Rest, obtaining, 272

Retirement
 impact, 66
 Lou Harris poll, 228
 self-efficacy, relationship, 227–228
Rhodes, Cecil, 250
Rhythmic oscillatory behavior, 209
Richter, Curt, 100–102
Rifkin, Jeremy, 132–133
Rockefeller, Nelson, 50
Rodin, Judith, 221, 224
Roessle, Robert, 41
Role models, set (display), 223, 230–235
Root behavior, influence (ability), 183
Rose, Morris, 31
Rosenzweig, Mark, 166
Ross, Nellie Taylor, 230
Rossman, Isadore, 125
Rothfarb, Ruth, 232
Rowe, John, 216
Rubner, M., 34
Rudman, Daniel, 127
Runners, characteristics, 232–233
Russell, Bertrand, 253

S

Sacher, George, 35
Sagan, Carl, 116, 157, 255
 assertion, 180
Sagan, Leonard, 43
Savants, cases, 162
Scheibel, Arnold/Madge, 173
Schneider, Edward, 30
Schrodinger, Erwin, 25
Schultz, Rudy, 234
Schulz, Richard, 224
Schwartz, William, 43
Schweitzer, Albert, 237
Scitovsky, Ann, 243
Second Law, biologic implications, 26
Second Law, The (Atkins), 24
Sedentary Death Syndrome (SEDS), 131
Segerberg, Osborne, 230–231, 249
Segovia, Andres, 230
Self-control, sense, 97
Self-destruction, immunity (nonapplication), 68
Self-efficacy, 215

approach, 236
elements, 229
failure, impact, 220
impact. See Health mastery, 236
measurement, 221
prescription, 223
relationship. See Retirement
Self-expression, 137
Self-fulfilling prophecy, 86
Self-knowledge
achievement, 256
drive, 155
Self-organization processes, 108
Self-Renewal (Gardner), 96
Selye, Hans, 109-110
Selzer, Richard, 235
Setting Limits (Callahan), 48, 244
Sex

aging, relationship, 150–152
death, relationship, 151–152
enlightenment, 137
health care professional, relationship, 150–152
importance, 137–139
performance, frequency (meaning), 135
Sex and Sexuality in Mature Years (Starr/Weinerin), 140
Sexual activity
improvement, 136–137
misconceptions/prejudices, 135
women/men, percentages, 139
Sexual attitudes. See Older persons
Sexual capacity, 188

Sexual expression, relationship. See Guilt
Sexual incapacity, 141–142
Sexual intercourse, trends, 139–140
Sexuality
enhancement, antidepressants (usage), 150–151
menopause/infertility, relationship, 138–139
relationship. See Aging; Longevity
transitional epoch, 137
Sexual performance, absence, 148
Sexual problems, 150
Shadows, avoidance, 272
Shakespeare, William
genius, question, 160
observation, 165
Shaw, George Bernard, 97, 166, 168
Sheehan, George, 194
Shelley, Percy Bysshe, 271
Shock, Nathan, 8
Shumway, Norman, 70–71
Siegel, Paul, 5, 28
Singh, JAL, 163, 164
Skeletal maturation, 7–8. See also Life span
Sleep
activity, impact, 208
anatomy, 210–211
apnea, 212–213
deprivation, 211
disorders. See Age-related sleep disorders
environment, control, 214
function, 207–208
hours, requirement, 67
importance, 181
increase. See Deep sleep
juice, 210
obtaining, 272
quality, improvement, 208
schedule, usage, 214
time, restriction, 214
Index 291

<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>206–214</td>
<td>usage</td>
</tr>
<tr>
<td>211</td>
<td>Sleep Center (Boston State Hospital)</td>
</tr>
<tr>
<td>212</td>
<td>Sleeping pills, danger</td>
</tr>
<tr>
<td>56</td>
<td>Smallpox, control</td>
</tr>
<tr>
<td>4</td>
<td>Smith, Charlie (life span)</td>
</tr>
<tr>
<td>216</td>
<td>Smoking abstinence, importance</td>
</tr>
<tr>
<td>213</td>
<td>Snoring</td>
</tr>
<tr>
<td>223, 235</td>
<td>Social persuasion</td>
</tr>
<tr>
<td>185</td>
<td>Solomon, Henry</td>
</tr>
<tr>
<td>80, 182, 258, 262</td>
<td>Somers, Anne</td>
</tr>
<tr>
<td>126</td>
<td>Space travel, calcium wastage</td>
</tr>
<tr>
<td>233</td>
<td>Spangler, Paul</td>
</tr>
<tr>
<td>169, 174</td>
<td>Spirduso, Warren</td>
</tr>
<tr>
<td>117</td>
<td>Sports, types</td>
</tr>
<tr>
<td>241</td>
<td>St. Vincent Millay, Edna</td>
</tr>
<tr>
<td>233</td>
<td>Stack, Walt</td>
</tr>
<tr>
<td>140</td>
<td>Starr, Bernard D.</td>
</tr>
<tr>
<td>95</td>
<td>Statutory senility</td>
</tr>
<tr>
<td>258–259</td>
<td>Stavskis, Leo</td>
</tr>
<tr>
<td>78–79</td>
<td>Steel, Knight</td>
</tr>
<tr>
<td>217</td>
<td>Stegner, Wallace</td>
</tr>
<tr>
<td>104–105, 230</td>
<td>Steinberg, William (medical problems)</td>
</tr>
<tr>
<td>179</td>
<td>Stengel, Casey</td>
</tr>
<tr>
<td>23, 107</td>
<td>Stengers, Isabelle</td>
</tr>
<tr>
<td>148</td>
<td>Steroid starvation</td>
</tr>
<tr>
<td>41</td>
<td>Stevenson, Adlai</td>
</tr>
<tr>
<td>60</td>
<td>Stewart, Anita</td>
</tr>
<tr>
<td>214</td>
<td>Stimulants, avoidance</td>
</tr>
<tr>
<td>230</td>
<td>Stokowski, Leopold</td>
</tr>
<tr>
<td>216</td>
<td>Stone, Virginia</td>
</tr>
<tr>
<td>10</td>
<td>Strehler, Bernard</td>
</tr>
<tr>
<td>191</td>
<td>Strength, health (contrast)</td>
</tr>
<tr>
<td>109–110</td>
<td>Stress, energy, impact</td>
</tr>
<tr>
<td>21</td>
<td>Stress, impact</td>
</tr>
<tr>
<td>53–54, 82</td>
<td>Stroke, impact</td>
</tr>
<tr>
<td>257–258</td>
<td>Successful aging</td>
</tr>
<tr>
<td>248</td>
<td>Suffering, presence</td>
</tr>
<tr>
<td>222</td>
<td>Suicide Prevention</td>
</tr>
<tr>
<td>26</td>
<td>Sun, energy</td>
</tr>
<tr>
<td>212</td>
<td>Sundowning syndrome</td>
</tr>
<tr>
<td>4</td>
<td>Supergerons</td>
</tr>
<tr>
<td>205–206</td>
<td>Superoxide dismutase tablets, promotion</td>
</tr>
<tr>
<td>113</td>
<td>Sweat, ability (evolutionary factor)</td>
</tr>
<tr>
<td>268</td>
<td>Symes, H. Leonard</td>
</tr>
<tr>
<td>156</td>
<td>Synapses, connections</td>
</tr>
<tr>
<td>20</td>
<td>SzentGyorgy, Albert</td>
</tr>
<tr>
<td>5</td>
<td>Taeuber, Cynthia</td>
</tr>
<tr>
<td>114</td>
<td>Tarahumara Indians, kickball races</td>
</tr>
<tr>
<td>43</td>
<td>Technologic imperative</td>
</tr>
<tr>
<td>59</td>
<td>Technology assessment</td>
</tr>
<tr>
<td>53–54, 82</td>
<td>Terminal illness, presence</td>
</tr>
<tr>
<td>247</td>
<td>confirmation</td>
</tr>
<tr>
<td>145</td>
<td>Testicles, function</td>
</tr>
<tr>
<td>35, 132</td>
<td>Thermodynamics, Second Law</td>
</tr>
<tr>
<td>22</td>
<td>Thermodynamic imperative</td>
</tr>
<tr>
<td>108</td>
<td>Thermodynamics, Fourth Law</td>
</tr>
<tr>
<td>38</td>
<td>consistency</td>
</tr>
<tr>
<td>133</td>
<td>imperotive</td>
</tr>
<tr>
<td>24</td>
<td>reconciliation</td>
</tr>
<tr>
<td>107, 132–133</td>
<td>restatement</td>
</tr>
<tr>
<td>21–22</td>
<td>understanding</td>
</tr>
<tr>
<td>16–18</td>
<td>Third age</td>
</tr>
<tr>
<td>35, 132</td>
<td>Thermodynamics, Second Law</td>
</tr>
<tr>
<td>26</td>
<td>biologic implications</td>
</tr>
<tr>
<td>133</td>
<td>imperotive</td>
</tr>
<tr>
<td>24</td>
<td>reconciliation</td>
</tr>
<tr>
<td>107, 132–133</td>
<td>restatement</td>
</tr>
<tr>
<td>21–22</td>
<td>understanding</td>
</tr>
<tr>
<td>94</td>
<td>Thirty-Six-Hour Day, The (Mace)</td>
</tr>
<tr>
<td>273</td>
<td>Thomas, Dylan</td>
</tr>
<tr>
<td>7, 53–54, 88</td>
<td>Thompson, Paul</td>
</tr>
<tr>
<td>226</td>
<td>Thoreau, Henry David</td>
</tr>
<tr>
<td>22–23</td>
<td>Time, defining</td>
</tr>
</tbody>
</table>
equation, 21–22
TM. See Transcendental Meditation
Tokma, Dennis, 70
Too Many Promises: The Uncertain Future of Social Security (Boskin), 263
Toscanini, Arturo, 230
Transcendental Meditation (TM), benefits, 125
Traumas (accidents), impact, 54–55
Treffert, Donald, 161
Tryptophan supplements, 210
U
"Ulysses" (Tennyson), 256–257
Under-nutrition, 33
Universal disorder, 23
Useful aging, 256–257
V
Vanity, 191. See also Graying
Vascular inadequacy, 147
Viagra, introduction, 147
Visual training, 132
Vital Involvement in Old Age (Kivnick), 217
Vital organ function, decline, 8
Vitamin pill, impact. See Age supplements, usage, 204–206
VO2. See Oxygen volume
Voodoo, 97–101
confrontation, 98
phenomenon, reality, 100
practice, evidence, 100
W
Wakefulness, promotion, 208
Walford, Roy, 28, 30, 205–206
diet restriction, 33
Walter, Bruno, 230
Warm bath, usage, 214
Watershed moment, 2
Weaver, Eula, 232
Weiner, Norbert, 157–158
Weinerin, Marcella Baker, 140
Well-being, self-dependence, 272
Wellbeing, Social Security system (impact), 96
What is Life?: The Physical Aspects of the Living Cell (Schrodinger), 25
What Men Live By (Cabot), 197
White, Paul Dudley, 123–124, 189–190
Who Shall Live? (Fuchs), 58
Why We Sleep (Horne), 207
Widower syndrome, 146
Will, trait, 231
Williams, Frank, 123
Willis, Sherry, 172–173
Wilson, Larry, 233
Windows on the Mind (Barth), 159
Wisdom of the Senses (Erikson), 217–218
Wolf, Stewart, 102–103
Wolf children. See Midnapore
Wolf's Law, affirmation, 126
Work, therapy, 95–96
Work satisfaction, 216
Worry time, scheduling, 214
Wright, Frank Lloyd, 166
Wyden, Ron, 244
Y
Youth, medical proselytizing, 11–14
Z
Zaretsky, Malcolm, 39
Zerhouni, Elias, 24
Zing, Robert M., 163
Zins, Dora, 215
Zoo animals, 186
Zukor, Adolf, 227